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ABSTRACT 

The capillary instability of a l i q u i d  je t  carrying an axial 

volume current is investigated for vericose deformations (m=O) . 
It is  found that the inclusion of H a l l  current in  Ohm's law leads 

to werstability of the Jet,  albeit with small frequency of 

oscillation. 
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I. INTRODUCTION 4 

The capillary in s t ab i l i t y  of a l iquid j e t  has been the subject matter 
1 of extensive investigations since the pioneer work by Lord Rayleigh . 

It is well known that the l iqu id  j e t  i s  unstable t o  a l l  axisymmetric 

perturbations having wave numbers (measured in mi ts of the reciprocal 

radius of the cylinderical column) l e s s  than unity. I n  an attempt t o  

provide a l iqu id  scale model of a pinched gas discharge, Dattner, Lehnart 

and Lundquist have carried out experiments with l iqu id  mercury column 2 

carrying a direct  axial volume current and they observe a sausage type 

(vericose) i n s t ab i l i t y  similar t o  that of a c lass ica l  l iqu id  j e t .  

It has been shown by Chandrasekha? that the presence of an ax ia l  

magnetic f i e ld  has a s tab i l iz ing  influence on the vericose in s t ab i l i t y  of 

a conducting l i qu id  j e t .  

current has been discussed by Murty who discussed the problkm f o r  small 

5 values of the e l ec t r i ca l  conductivity. Qecently Gupta has discussed the 

The s t ab i l i t y  of a capillary j e t  with axial  volume 
4 

s t a b i l i t y  of a l iqu id  j e t  w i t h  axial volume current with and without the 

presence of an ax ia l  magnetic f i e l d  and bas computed the growth ra te  of 

i n s t a b i l i t i e s  i n  several l imiting cases f o r  vericose deformations. 

The importance of including Hall current i n  Ohm's l a w  i n  investigating 

the s t a b i l i t y  of hydramagnetic configurations has been pointed out by. 

6 7 Taylor and Ware . The e f f ec t  of Hall current on the s t a b i l i t y  of a 

capi l lary j e t  i n  the presence of an axia l  magnetic f i e ld  has been 

investigated by Trehan e t  a18 who showed that the inclusion of H a l l  current 

does not lead t o  averstabi l i ty  i n  the case of a l i qu id  mercmy or sodium j e t .  

Recently &kid has shown that the inclusion'of Hall current 
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leads t o  overstabi l i ty  i n  a situation where an i n f in i t e ly  conducting 

plasma occupies the half space OsZ<dQand i s  supported against gravity 

by magnetic pressure due t o  a jump i n  the f i e ld  strength a t  the plasma 

boundary Z=O. 
L, 

We investigate here the effect  of H a l l  current on the capillary 

i n s t a b i l i t y  of a f i n i t e l y  conducting 1 quid j e t  carrying an axial volume 

current. 

to  axisymmetric perturbations. 

inclusion of Hall current leads t o  overstabi l i ty  of the je t .  

For the sake of mathematical simplicity w e  r e s t r i c t  ourselves 

It i s  of i n t e re s t  t o  note that the 

11. FORMULATION OF THE PROBLEM 

* We consider a s t a t i c  and inf in i te ly  long cylinderical l iqu id  j e t  

carrying a t o t a l  current I through a cross-section of the j e t .  

associated circular  magnetic f i e l d  i s  given by H =Hr/R, rsR, where 

H S I / R  and R i s  the radius of the j e t .  The f lu id  i s  assumed t o  be 

incompressible, inviscid and having a constant density p and f ini te  

e l ec t r i ca l  conductivity 0. 

obtained from the condition of pressure balance and we f ind  p=T/R 

I- ($/4n) (1-r2/R2) where T is  the surface tension. 

our considerations t o  the case when the j e t  i s  in free space and the 

The 

0 

c 

The pressure dis t r ibut ion i n  equilibrium is  

We sball r e s t r i c t  

external material pressure can be ignored. The magnetic f ie ld  exter ior  

: I  

t o  the j e t  is  given by H = HR/r, n R .  e 
We now imagine the boundary of the cylinder t o  be deformed from 

r = R  to one given by 

I 
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(1 1 
.. 

r=R + eo exp ( u t  + it%), 
where 

deformations (m = 0). 

perturbed quantit ies be given by 

is  a constant and we r e s t r i c t  ourselves t o  axisymmetric (vericose) 

As a resul t  of the deformation l e t  the various 

u, P + kip a n d 2  + &  , (2 1 
m 

where U, 6p and h are  small perturbations i n  the velocity f i e ld ,  pressure 

and magnetic f i e l d  respectively. We shall assume all  the perturbations 
I 

, 

, The linearized hydramagnetic equations, including the H a l l  current, I 

I guverning-the perturbed quantities then reduce t o  

and 

2imci) h = q v x v  x h , 
* . . Y  

( W - r  u 

where n = 6p/p +,€J.,h/hnp, q = 1/4m and C1 = C/hge H/hnpy~, 

i s  the ion gyration frequency given by % = eH/Mc and M is  the ion 

1 mass. It i s  convenient t o  write Eq. (5) as 
I o x y  e++*, (6 1 

b 

where 

2 2 2  and n = 4 A , A2 = $/hnp, x=AR. 

readily obtained by following the procedure similar t o  that used by 

Taylor'' and we may write 

The solution of Eq. (6) may be 



where 

The solution of Eq. (9) is given by ( fo r  m 4 )  

"3 
? and 

2 2  
al = 02' and C!s are the  integration constants. Since 

we obtain fo r  
- J 

where 1 = +i 

we ge t  = A2 = A (say). Keeping i n  mind that % = 

the perturbation i n  the magnetic f ie ld  

3 
2 ' 2  2 

'01' 

and 

(14) 

(15 

The perturbation i n  the pressure is  obtained by taking the divergence 

of Eq. (4) and 

obtain f o r  the 

2 p n = -  

making use of the solonoidal character o f 2  We thus 

equation governing n: 
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The solution of Eq. (17) is given by 

where E is the integration constant. From Eqs. (15) and (18), we obtain: 

The perturbation i n  the vacuum magnetic field is given by 

Further, the change i n  the surface tension pressure, 6pT is known to be 

I 
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111. THE DISPERSION RELATION 

I 

i 

I 

1 

This i s  obtained as a r e su l t  of matching the boundary conditions w h i c h  

are  (1) the radial component of the velocity u 
with the assumed form of the deformed boundary given by Eq. (l), (2)  

the magnetic f i e l d 2  and (3)  the normal component of the t o t a l  s t r e s s  m u s t  

be continuous acrosa the deformed boundary. The first condition leads t o  

a t  r = R  must be compatible r 

(23 

where Y = hR. The continuity of the normal component of h gives 
I 

r 

1 

c3 = g (c +c ) yJ , 
1 2 ! L  

I '1 
w h i l e  the continuity of the Z-component of h yields 

-, 

1 
1 Equations (24) and (25) lead t o  either * 

c =o -, cl+ c2 = 0 3 
o r  the  requirement that 

' I  

(26) 1 

I 

1 

I 

This relation does not correspond t o  any deformation of the boundary and i s  

of no in t e re s t  f o r  the problem a t  hand. Jhrther, f o r  the physical s i tuat ion 

of in te res t ,  namely l iqu id  sodium or mercury the r e s i s t i v i t y  i s  very high :~ 
' I  

2 2 and we can s e t  = x + 6 where & = R ( ~ - 2 i n  /xu, )/2xR<x and w e  can ver i fy  3 i 

! that Eq. (27) leads t o  a root which is incompatible with this assumption. ! 
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Therefore, we must s e t  C = 0 and C + C2 = 0. Thus Eqs.  (24) and (25) 3 1 

are sa t i s f i ed  identically.  The continuity of the 0-component of the 

magnetic f i e l d  a t  the perturbed boundary requires 

e 0 h + 2, H/R = 0 . (28) 

The continuity of the normal component of the stress tensor at  the deformed 

boundary requires 

where we have used the superscripts 'p'  and ' v '  t o  indicate the plasma 

and the vacuum magnetic f i e lds  respectively. 

re la t ions w e  obtain' after some s t ra ight  forward calculations the dispersion 

relation: 

W i n g  use of the foregoing 

a )  L i m i t  of Inf in i te  Conductivitl. 

We may f irst  observe tha t  i n  the l i m i t  of i n f in i t e  conductivity ~0 
1 and Eq. (30) reduces t o  the classical  resu l t  of Lord Rayleigh . 

i n  the l i m i t  of i n f i n i t e  conductivity, Hall current has no e f fec t  on 

Thus 
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the stability of a cylinder carrying an axial volume current. 

is, perhaps, not surprising as it is known that in infinitely conducting 

cases, the inclusion of Hall current i n  Ohm's law has effect on the 

T h i s  result 

stability of some hydromagnetic configurations while in some cases it does 

not. It may, perhaps, be in order to remark here that in the case of 

a sheet pinch with trapped axial magnetic field, it has been shown by 

Buti et all' that H a l l  current has no influence on its stability. On the 

other hand, it is interesting to note that Hosking has recently reported 

a low frequency instability due to the H a l l  current in a plasma supported 

9 

against gravity by a magnetic field. 

b) No H a l l  Current . 
In the limiting case where the Hall current is neglected, wC- and 

Eq. (30 )  reduces to the form given by Gupta 5 . 
c) High Resistivity Limit. 

We now wish to investigate the effect of'Hall current in the high 

resistivity limit. To this end we may write, correct to second order: 

, 
where 

and we assume that 6/x<<1. The dispersion relation then reduces to 

X I l ( X )  

In(x)- (X -1) - 4NG(X) = 0 , + 

3 f  
- 

where we now measure w in units of (T/pR ) and 

(33 1 

i 
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and 
F(x) = G(x) - 5(~)/21; (x) . 

Eq. (33) is a quadratic in (u2 whose roots to the lowest significant order are: 

. 

w = w  +iWi’ 
0 

where 

q ( x )  (1-x 1 ] *  J 

XIl(X) 

0 
wO 

and 

(37 1 

It is to be observed here that in the limit when -, wi-Q and W=U) . C 0 

differs from that given by Gupta5 in the appearance The expression for U) 

of F(x) instead of G(x) in his expression in the first term on the 
0 

left hand side of Eq. ( 3 6 ) .  T h i s  discrepancy is due to the fact that he 

has not carried out the expansion of the dispersion relation consistently 

to the second order. 

It can be shown that the function F(x) is always positive. When x<l 

the quantity under the radical sign in U) 

than 2NSF(x). 

we have overstability. 

is always positive and greater 
0 

Since wi is always finite, the positiveness of w implies that 
0 

Thus the inclusion of H a l l  current leads to 

) . ~ . .  . . . .  . -. . 

. ‘ i  

I 
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I 

o v e r s t a b i l i t y  of t h e  j e t  rather than convective i n s t a b i l i t y  which i s  

k e  case vnen one neglects iiail current. 

3 2  For l i q u i d  mercury, ~=7.5~10 a / s e e ,  p=13.6 gm/m3 and T=487 

dynes/cm. Taking R=0.2 cm w e  find that s=0.000178. The behaviour of 

and wi fo r  various values of N are shown i n  figures 1 and 2. We 
wO 

f i nd  that the j e t  i s  unstable fo r  a l l  wave numbers x l e s s  than xc and 

t h a t  the in s t ab i l i t y  is  m a x i m u m  for x=x*. The values of xc, x* 

and w0.w are  given i n  table 1 fo r  some values of N. 

IV CONCLUSION 

We f ind  that the inclusion of E'aU current leads t o  overstabi l i ty  

of a l iquid  j e t  carrying an axial volume current. 
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for N=l ,  2, 3 and 4 
WO* 

Values of xc, x* and 
.- 

N 

1 
& 

2 

jiC 

1.369999 
1 629999 
1.839999 
2.00999 

** 

0.941 
1. log 
1.239 
1 345 

0.647 
0 . 9 3  
1.178 
1.415 
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Fig. 1. The behavior of w0 as a function 02 the wave number x. 

,Fig. 2. The behavior of wi/w0 as a function of the wave number x. 
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